NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M. Tech. in Electronics & Communication Engineering (VLSI Design) M.Tech Semester - I

L	Т	Practical component				С
		LPW	PW	W	S	
3	-	2	-	-	-	4

Course Code	6EC104CC22
Course Title	Advanced Digital System Design using
	Programmable Logic

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Implement the design from specification to net list level using hardware description language
- 2. Implement the digital designs on FPGA in context of synthesis, device utilization and speed and power optimization
- 3. Optimize the design using the concepts of simulation, synthesis and Place & Route

Syllabus:

Teaching Hours: 45

UNIT I:	03
Review of basic digital-logic design, Combinational logic, Structured logic implementation,	
Sequential logic, Finite-state machines	
UNIT II:	06
Overview of digital technology, Logic families, Interfacing, glue logic,	
RAM/ROM, Basic Programmable devices (PROMs, PALs and PLDs)	
UNIT III:	06
Synchronous circuits, FSM design, Algorithum state machine charts, Design example of	
sequential synchronous circuits, Asynchronous behaviour, analysis and synthesis of	
asynchronous circuits, Design examples	
UNIT IV:	10
Concepts of Verilog HDL for Behavioral, RTL, Data-flow, Structural and switch level	
Modeling	
UNIT V:	10
Computer-aided design, Logic compilation, Two-level and multi-level logic synthesis,	
Technology-independent optimization, Technology mapping, Sequential-logic synthesis,	
Tools for mapping to PLDs and FPGAs	
UNIT VI:	10
Programmable Logic Devices, CPLD and FPGA, Architectures and Technology, Realization	
of Digital Design on FPGA, Advances in FPGA	

Self Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. Brown Vranesic, Fundamentals of Digital Logic with Verilog Design. Tata McGrawHill
- 2. Wyane Wolf, FPGA Based System Design, Pearson
- 3. Sameer Palnitkar, Verilog HDL, Pearson