NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M.Tech. in Electronics & Communication Engineering (VLSI Design)

M.Tech. Semester - II

L	Т	Practical component				
		LPW	PW	W	S	
3	-	2	-	-	-	4

Course Code	6EC151CC22
Course Title	VLSI Design Verification and Testing

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- Apply the concepts of testing to improve the quality and yield of IC. 1.
- Develop the test bench for given behavioral and RTL design. 2.
- 3. Develop the test set for given circuit using various test generation methods for digital circuits.
- 4. Identify the Design-for-Testability and Built-In-Self-Test methods for combinational and sequential CMOS circuits.

Syllabus: Teaching Hou	rs: 45
UNIT I: Introduction Need of Testing, Different Roles of Testing, Cost and Yield considerations with reference to	03
I UNIT II: Functional Verification Methods and Tools	08
Concept, test bench architecture, Verification Language, Simulation tools, Functional and	00
UNIT III. Formal Varification Mathada	04
UNIT III: Formal verification internods	04
Binary Decision Diagram, Equivalence Checking, Assertion based verification, Emulation	10
UNIT IV: Fault Models	10
Stuck-at Models, Transistor Short-Open Model, Bridge Fault Models, Single-Stuck-At	
Models, Fault Equivalence and Fault Dominance	
UNIT V: Automatic Test Pattern Generator	10
Deterministic Test Pattern generation, Basic and Advance Algorithm for test pattern	
Generation, Types of test pattern sets, ATPG System	
UNIT VI: Design-For-Test and Built-In-Self-Test	10
Introduction, Testability Analysis, Adhoc DFT Methods, Structured DFT Methods, Scan-	10
Chain Based Design Built-In-Self-Test Design Bules Logic BIST Architecture	
enum Duseu Design, Dune in Sen Test Design Rules, Degre Dist Theinteeture	

Self-Study:

The self-study contents will be declared at the commencement of Semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed Signal VLSI Circuits, Kluwer Academic Publishers
- 2. M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems Testing and Testable Design, **IEEE Press**
- 3. Spear, Chris, Tumbush, Greg, System Verilog for Verification-A Guide to Learning the Testbench Language Features, Springer