NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M.Tech. in Electronics & Communication Engineering (VLSI Design) M.Tech. Semester - II

Department Elective I

L	Т	Practical component				
		LPW	PW	W	S	
3	-	-	-	-	-	3

Course Code	6EC165ME22
Course Title	Advanced Topics in VLSI Design

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Comprehend the recent VLSI technology trends.
- 2. Analyse the scaling limit of CMOS Design and issues related to high density designs.
- 3. Analyse the possible solutions of scaling limits of CMOS and research trends in VLSI technology and design.

Syllabus:

Teaching Hours:45

UNIT I: State-of-Art in CMOS Technology	05			
Evolution, Dual Gate CMOS Technology, HKMG CMOS Technology, Gate-All-Around and				
Vertical MOS				
UNIT II: Limitations of CMOS Technology	10			
Conventional VLSI design flow and its difficulties in dealing with deep submicron CMOS				
design				
UNIT III: Advances in VLSI: Beyond CMOS	10			
Overview of Beyond CMOS options, Tunnel Junction Devices, Indium Antimonide				
Transistors, Carbon Nenotube FETs, Graphene nanoribbon, Spintronic, Photonics				
UNIT IV: Advances: More Moore and More-Than Moore	10			
Nanosystems, RF Systems, Biochips, Advances in Memory Technology				
UNIT V: High Performance VLSI Design	05			
Signal integrity, types of noise in gigabit CMOS circuits, power plane noise and decoupling				
capacitor calculation, signal coupling and its impact on circuit performance				
UNIT VI: Recent Topics				
Recent topics from SIA Roadmap				

Self-Study:

The self-study contents will be declared at the commencement of Semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings:

1. International Technological Road Map for Semiconductors, Selected Research papers from reputed journals and proceedings