NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M.Tech. in Electronics & Communication Engineering (VLSI Design) M.Tech. Semester - II

Department Elective II

LT		Practical component				С
		LPW	PW	W	S	
3	-	-	-	-	-	3

Course Code	6EC168ME22
Course Title	Deep SubMicron CMOS IC

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Design the small scale MOS digital circuits and cells for given specifications.
- 2. Apply scaling methods to digital logic design and determine performance parameters.
- 3. Design deep submicron CMOS logic using lambda rule.

Syllabus:

UNIT I: Impact of Scaling

Deep Sub-micron MOS Transistor Theory & impact of device scaling, Deep Sub-micron Transistor Models, Subthreshold current and subthreshold swing, Drain Induced Barrier Lowering (DIBL), Punch through, Gate Induced Drain Leakage (GIDL), Deep Sub-micron Noise & Noise Tolerant Designs, Crosstalk, Leakage, Supply Noise & Process Variations, Noise Tolerant

UNIT II: Circuit Design Styles

(skewed CMOS, noise tolerant domino, layout styles for high noise immunity) CMOS Deep Submicron Fabrication Technology, Silicon Processing Technology Steps (n-Well CMOS Technology, p-Well, Twin Tub, and Triple Well Technologies), Deep submicron

UNIT III: Fabrication Technology

Trench Isolation, Antenna Rules, CMP Rules, Design Margin, Supply Voltage, Temperature, Process Variation, Design Corners, Matching,

UNIT IV: Delay Tracking

Latch up and Reliability (Electromigration, Electrostatic discharge (ESD), Electrical overstress (EOS), Self-heating, Hot Carriers), Latchup, Latchup Prevention, Overvoltage, Time-Dependent Dielectric Breakdown (TDDB)

UNIT V: Testing for DSM VLSI Design

S chmoo Plots, Automatic Test Equipment, Additional JTAG Instructions, Iddq testing of circuits with high intrinsic leakage: delta Iddq, two parameter tests. Idd waveform analysis

Self-Study:

The self-study contents will be declared at the commencement of Semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings:

- 1. Harry Veendric, Deep Sub micron CMOS ICs, Springer
- 2. Christian Piguet, Low power Electronics Design, Chemical Rubber Company Press

Teaching Hours:45

10

10

10

05

10