NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M.Tech. in Electronics & Communication Engineering (VLSI Design) M.Tech. Semester - II

Department Elective III

L	Т	Practical component				
		LPW	PW	W	S	
2	-	2	-	-	-	3

Course Code	6EC172ME22
Course Title	Reconfigurable Computing

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Comprehend the concept of reconfigurable computing, architectures and types of reconfigurations.
- 2. Apply the concepts of reconfiguration on the systems design for given specification /design.
- 3. Evaluate the digital systems designed using reconfigurable architectures for their performance.
- 4. Implement embedded systems on reconfigurable hardware for given specifications.

Syllabus: Teaching Hours	5:30
Unit I: Introduction	03
Computing requirements, Area, Technology Scaling, Instructions, Custom Computing	
Machine,	
Unit II: Comparison of Computing Machines	06
Fine-grained & Coarse-grained structures, Comparison of different architectures viz. PDSPs,	
RALU, VLIW, Vector Processors, Memories.	
Unit III: Arrays for Fast Computations	06
CPLDs, FPGAs, Multi context, Multi FPGA, Partial Reconfigurable Devices.	
Unit IV: High Level Synthesis	09
Datapath, Constructive Routing, Retiming, Bit stream Generation, JBits, Fast Mapping,	
System C, HandleC	
Unit V: Evaluating and Optimizing Problems for FPGA Implementations	06
Instance-specific design, Constant Propagation & Partial Evaluation, Precision Analysis &	
Floating Point, Distributed Arithmetic, CORDIC Algorithm, Task allocation: FPGA vs. CPU	
partitioning,	

Self-Study:

The self-study contents will be declared at the commencement of Semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. Scott Hauck, Andre Dehon, Reconfigurable Computing, Morgan Kauffman
- 2. Christophe Bobda, Introduction to Reconfigurable Computing, Springer
- 3. Maya Gokhale, Paul Ghaham, Reconfigurable Computing, Springer
- 4. IEEE Journal papers on Reconfigurable Architectures, High Performance Computing Architecture (HPCA) Society papers