NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M.Tech. in Electronics & Communication Engineering (VLSI Design) M.Tech. Semester - II <u>Department Elective III</u>

L	Т	Practical component				С
		LPW	PW	W	S	
2	-	2	-	-	-	3

Course Code	6EC173ME22
Course Title	MEMS Design

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Comprehend the concepts of advanced Micro/Nano fabrication technologies.
- 2. Develop the applications of MEMS in area of optical, modulators, switches, and displays.
- 3. Apply design techniques of RF MEMS switches, relays, varactor, phase shifter, antennas.

Syllabus:

Teaching Hours:45

UNIT I: Introduction to MEMS	08
Advanced Micro/Nano Fabrication Technologies: Plasma physics, ICP etch, Deep Si etch,	
Deep oxide etch, Surface micromachining, Bulk micromachining: multiple wafer stack, SOI,	
SCREAM, CMOS-MEMS: Thin-film, bulk, DRIE, CMOS-based Sensors and Interface	
Circuits Design	
UNIT II: Electrical, Mechanical and Optical properties of MEMS material	10
Chemical, Thermal, Inertial, Interface circuit design, Optical MEMS: Fundamentals of light:	
Propagation, Interference, Doppler Effect, Polarization, Coherence, Micromirrors, Microlens;	
Microgratings Corner cube reflectors, Optical communications, case study	
UNIT III: Applications of MEMS	10
Phase modulators, attenuators, switches, Displays, Scanners, Biosensors, Spectroscopy	
UNIT IV: RF MEMS	13
RF MEMS switches and Micro Relays, MEMS varactors and inductors, MEMS phase	
shifters and filters, Micro machined Antenna, case study	
UNIT V: MEMS Packaging	04
Packaging design, materials, Packaging techniques: Bonding, Sealing, Dicing, Wafer-level	
packaging, Packaging for medical, aerospace and RF MEMS applications	

Self-Study:

The self-study contents will be declared at the commencement of Semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. G. Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill
- 2. S. Senturia, Microsystem Design, Kluwer Academic Publishers
- 3. M. Madou, Fundamentals of Microfabrication, Chemical Rubber Company Press
- 4. G. Rebeiz, RF MEMS: Theory, Design and Technology, John Wiley & Sons
- 5. B. Bouma and G. Tearney, Handbook of Optical Coherence Tomography, Marcel Dekker Inc