NIRMA UNIVERSITY

SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY

M. Tech. in Electronics & Communication Engineering (Embedded System) M.Tech Semester - I

L	T	Practical component				
		LPW	PW	W	S	
3	-	2	-	•	-	4

Course Code	6EC204CC22
Course Title	Embedded Systems Programming

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Comprehend the requirements of Embedded Systems Software
- 2. Utilize the Software Architectures for Embedded System programming
- 3. Program Embedded Systems
- 4. Solve issues related to Run-time Environment and Memory management in Embedded Systems

Syllabus: Teaching Hour	s:45
UNIT I: Software Architectures	11
Requirements of Embedded Software, Basics of Interrupts, shared data problem, latency, scheduling policy, Round Robin, Round robin with interrupt, function queue scheduling. UNIT II: Programming Languages	11
Desired Language Characteristics, Introduction to Object Oriented Programming concepts, C for Programming embedded systems, Object Oriented Programming for Embedded Systems in C++, Use of Java for Embedded Systems, Run-time Exception handling	
UNIT III: Programming and Run-time Environment	06
Mixing C and assembly, Compiling, Assembling, Linking, Debugging, Basic Compilation Techniques	00
UNIT IV: Profiling	08
Analysis and Optimization of Execution Time, Analysis and Optimization of Energy and Power, Analysis and Optimization of Program Size, Program Validation and Testing	00
UNIT V: I/O Programming & Memory management	05
Synchronization, transfer rate, latency, Polled waiting loops, interrupt driven I/O, DMA, Storage class, scope and lifetime of variables, static and dynamic allocation, shared memory,	
recursive/reentrant function	
UNIT VI: Embedded System Software	04
Introduction to Boot Loader, Embedded File Systems, Embedded Database and Data Structure	

Self Study:

The self study contents will be declared at the commencement of semester. Around 10% of the question will be asked from self study contents.

Laboratory work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. Embedded Software Premier David Simon (Pearson)
- 2. Embedded Real-time Systems Programming Sri Ram Iyer and Pankaj Gupta (TMH)
- 3. Fundamentals of Embedded Software: where c and assembly meet Daniel W lewis (Prentice hall)
- 4. Introduction to Embedded Systems by Shibu K V (TMH)
- 5. Computers as Components Principles of Embedded Computing Design by Wayne Wolf, 2nd Edition, (Morgan Kauffman)