NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY

M. Tech. in Electronics and Communication Engineering (Embedded System)

M.Tech. Semester - II Department Elective I

L	T	Practical component				
		LPW	PW	W	S	
3	-	-	-	-	-	3

Course Code	6EC265ME22
Course Title	Virtual Reality Engineering

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Comprehend the basics of Virtual Reality and its technology.
- 2. Analyze the available Virtual Reality mechanism of sensing, haptics, tracking and rendering.
- 3. Design Virtual Reality applications using hardware interfaces.

Syllabus: Teaching Hour	s:45
UNIT I: Introduction	09
Goals, Definitions, Software, Hardware, Head Mounted Displays, Geometry of Virtual Worlds,	
Study of Perception and Sensation, Perceptual Engineering, Importance in Virtual Reality	
UNIT II: Graphics Pipeline and OpenGL	06
Human Optical System, Light and Optics for Virtual Reality, Graphics Pipeline - Overview and	
Transformations (Rotation, translation, scaling, model view matrix, projection matrix), Lighting	
and Shading, OpenGL Shading Language	
UNIT III: Human Visual Physiology and Tracking	08
Visual Perception, Depth and Motion Perception, Orientation Tracking Systems, Pose tracking	
UNIT IV: Rendering	06
Depth of field and Analysis, Stereo rendering, Visual rendering, Rastering, Shading, CUDA	
programming. Panoramic Imaging and Cinematic Virtual Reality	
UNIT V: Sensing and Haptics	10
Inertial Measuring Units: Gyrometers, Accelerometers, Magnetometers, Sensor Fusion,	
Auditory Sensation and Perception, Rendering Audio, 3D audio, Haptic Sensation and	
Perception, Rendering Haptics, Stereognosis, Sensation and Perception of Other Senses,	
Rendering other senses	
UNIT VI: Interface for Virtual Reality	06
VR Engines and Aspects of VR Latency, eye tracking, post-rendering warp Locomotion,	
Manipulation, Social Interaction, Applications and Challenges in VR	

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings:

- 1. Steve Lavalle, Virtual Reality, online open book
- 2. George Mather, Foundations of Sensation and Perception: Psychology Press
- 3. Kelly S. Hale, Kay M. Stanney, Handbook of Virtual Environments: Design, Implementation, and Applications, CRC Press.
- 4. Peter Shirley, Michael Ashikhmin, and Steve Marschner, Fundamentals of Computer Graphics, A K Peters/CRC Press
- 5. Bureda Gridore, Coiffet Phillipe, Virtual Reality Technology Wiley Interscience