NIRMA UNIVERSITY

SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY

M.Tech. in Electronics and Communication Engineering (Embedded System)

M.Tech. Semester - II Department Elective I

L	T	Practical component				
		LPW	PW	W	S	
3	-	-	-	-	-	3

Course Code	6EC266ME22
Course Title	Autonomous Navigation

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Compare and select the sensor technologies for autonomous navigation of robots and drones.
- 2. Plan the path of navigation using obstacle avoidance algorithms and exploration.
- 3. Apply tracking and motion estimation techniques for autonomous navigation.

Syllabus: Teaching Hou	rs:45			
UNIT I: Sensor Technology	08			
Sensor technologies for Autonomous Navigation: Gyro meter, Accelerometer, Radar, Sonar,				
LIDAR, Infrared, GPS, touch sensors, proximity sensors, sound sensors, vision sensors,				
Sensor Fusion				
UNIT II: Modeling of Navigation	08			
Degree of autonomy, components of mobile robot, Behaviour modeling, trajectory				
prediction, localization and mapping methods, and path planning in the presence of obstacles,				
Feature based Simultaneous Localisation and Mapping (SLAM), Indoor Navigation				
UNIT III: Geometry Estimation Methods	08			
Geometry, Visual SLAM Using 2D Visual Odometry, State estimation methods - Kalman				
filter, Extended Kalman filter, Bayesian Approach, Recursive Filtering and particle				
filtering				
UNIT IV: Camera Modeling	06			
Camera mapping using SLAM, 3D calibration, Pixel based techniques for motion, structure				
from motion, Multi Camera modeling and Vision				
UNIT V: Tracking and Estimation	05			
Object Tracking, Road following, edge extraction, passive depth estimation, visual				
motion estimation, passive stereo, feature tracking, robust estimation, motion planning				
UNIT VI: Avoidance Algorithm	05			
Local Motion planning for indoor navigation, Collision detection and avoidance, Trajectory				
Design and Motion Control, Obstacle avoidance and exploration,				
UNIT VII: Case Study	05			
Robots and Drones autonomous navigation, Cross country navigation				

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings:

- 1. Sebastian Thrun, Wolfram Burgard, and Dieter Fox, Probabilistic robotics, MIT Press,
- 2. Richard Hartley and Andrew Zisserman, Multiple view geometry, Cambridge University Press
- 3. Richard Szeliski, Computer vision: Algorithms and applications, Springer.