NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY

M. Tech. in Electronics and Communication Engineering (Embedded System)

M.Tech. Semester - II Department Elective III

L	Т	Practical component				
	•	LPW	PW	W	S	
2	-	2	-	-	-	3

Course Code	6EC276ME22	
Course Title	Testing and Verification of Embedded Systems	

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Propose the verification architecture of given Embedded Systems.
- 2. Apply the concepts of hardware software co design from testing and verification point of view.
- 3. Design SoC test wrapper for embedded systems.
- 4. Perform testing on given embedded software components.

Syllabus: Teaching Hours:45
UNIT I: Introduction 02
Need of Testing, Different Roles of Testing, Cost and product considerations with reference
to Testing
UNIT II: Functional Verification Methods and Tools 10
Concept, Test Bench Architecture, Test Bench Generation, Monitors, Checkers, Scoreboard,
Verification Language, Simulation tools, Emulation, Functional and Code Coverage,
Assertion based Verification
UNIT III: Formal Verification Methods 04
Binary Decision Diagram, Equivalence Checking, Model Checking
UNIT IV: Challenges in Testing and Verification of Embedded Systems 05
Design-for-Test, Built in Self-Test, Design-for-Manufacturing, Design-for-Upgrades, Over
the Air Interface, Embedded System Test Jig Design, Testing of Asynchronous Systems
UNIT V: SoC Testing 05
Introduction to IP Testing-Memory Testing and FPGA Testing, Core Based Testing and Test
Wrapper, SoC and Embedded System Testing
UNIT VI: Embedded Software Testing 04
Criteria for Embedded Software Testing, Methods and Tools of Software Testing, Validation,
Unit Level Testing, Component Testing, Integrated Testing, System Level Testing

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. Malvin A Breuer, Diagnosis and Reliable Design of Digital System, Computer Science Press
- 2. Laung-TerngWang, VLSI Test Principals and Architecture:, Morgan Kaufman
- 3. Bart Broekman, Edwi Notenboom, Testing Embedded Software, Pearson Education
- 4. Daniel W lewis, Fundamentals of Embedded Software: where C and Assembly meet, Prentice Hall
- 5. Michael L. Bushnell and Vishwani D. Agrawal Essential of Electronic Testing for Digital, Memory and Mixed Signal VLSI Circuits, Kluwer Academic Publishers