NIRMA UNIVERSITY

Institute:	itute: Institute of Technology, School of Technology	
Name of Programme:	B.Tech. in Electronics & Communication Engineering	
Course Code:	4EC303ME25	
Course Title:	Broadband Wireless Communication	
Course Type:	Department Elective	
Year of Introduction:	2025-26	

		Practical				
LT		Component				\mathbf{C}
		LPW	PW	$ \mathbf{w} $	S	
3	1	-	-	-	-	4

Course Learning Outcomes (CLOs):
At the end of the course, the students will be able to

1	apply multi-carrier modulation in broadband wireless communication	(BL3)
2	analyse MIMO system and scheduling algorithms in LTE	(BL4)
3	use 5G networks for low power communication using IoT	(BL5)
4	evaluate the performance of broadband communication using LTE advanced.	(BL5)

Unit	Contents	Teaching hours (Total 45)
Unit I	Multicarrier Modulation: High data rate communication, frequency selective channels, Orthogonal Frequency Division Multiplexing (OFDM), Single Carrier FDMA (SC-FDMA), OFDM based multiple access (OFDMA), cyclic prefix.	05
Unit II	MIMO Systems and Scheduling: Diversity techniques and spatial multiplexing in MIMO systems, scheduling, link adaptation, and Hybrid ARQ, different transmission modes in Long Term Evolution (LTE) systems.	05
Unit III	Long-Term-Evolution (LTE) Cellular Networks: Network architecture, physical layer, resource management, downlink physical layer processing, uplink physical layer processing, access procedures	12
Unit IV	LTE Advanced: Different features of Release 10 and onward, Carrier Aggregation, enhanced MIMO systems, CoMP technology, Heterogeneous networks, device-to-device communication, machine-to-machine communications, Data offloading, 3D MIMO.	09
Unit V	5G Networks: Drivers for 5G, 5G Internet, Internet of Things (IoT), small cells for 5G mobile networks, mobile clouds, security in 5G networks.	09
Unit VI	Spectrum Sensing Techniques: Spectrum Sensing Techniques in Cognitive Radio: Energy detection, Cooperative sensing, Receiver operating characteristics (RoC)	05

Self Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the question will be asked from self-study contents.

Tutorial Work: This shall consist of at least 10 tutorials based on the above syllabus.

Suggested Readings/ Reference:

- 1. E Dahlman, S. Parkwvall, J Skold, 4G LTE/LTE Advanced for Mobile broadband, Academic Press, Elsevier
- 2. X. Zhang, X. Zhou, LTE Advanced Air Interface Technology, CRC Press
- 3. J. Rodriguez, Fundamentals of 5G Mobile Networks, John Wiley

Suggested List of Tutorials

Sr.	Name of Experiments/Exercises	Hours
Vo.		
1.	Single input multiple output system (SIMO)	01
2.	Multi input multi output system (MIMO)	01
3.	Orthogonal Division multiplexing (OFDM)	01
4.	Space frequency block code	01
5.	Spatial multiplexing	01
6.	Scheduling	01
7.	Heterogeneous networks	01
8.	Carrier aggregation	01
9.	Coordinated Multi point (CoMP) technology	01
10.	Turbo codes	01
11.	Device to device communication	01
12.	Relaying	01
13.	Data offloading	01
14.	Resource management in LTE	01
15.	Spectrum sensing in cognitive radio	01