Nirma University

School of Technology, Institute of Technology

B. Tech (Instrumentation and Control Engineering)

Semester VII

L	T	P	C
2	0	2	3

Course Code	2ICDE64
Course Title	Introduction to R programming

Course Outcomes (CO):

At the end of the course, students will be able to -

- 1. explain various constructs of R language
- 2. formulate various statistical functions using R language
- 3. evaluate models using R language
- 4. analyze and plot the time series data

Syllabus:	Teaching Hours	
$\begin{array}{l} \textbf{UNIT 1: Introduction} \\ \textbf{Overview of } R \text{ , Basic syntax, script files, } R \text{ data types and objects , operators and } \\ \textbf{variables} \end{array}$	02	
UNIT 2: Decision making and loops If statement, If else statement, switch statement, Repeat loop, for loop ,while loop, break and next statement	03	
UNIT 3: Function and Strings Function definitions, function components, Built in functions, User defined functions, Introduction to strings, Strings manipulation.		
UNIT 4: Vectors, list, matrices and arrays Vector creation, Vector manipulation, creating list, naming accessing and manipulating list components, merging list, matrix computations, manipulating array elements, calculation using array elements		
UNIT 5: Factors and data manipulation Concept of data frame, Factors in data frame, generating factor levels, Extract data	03	

from data frame, expand data frame, merging data frames, casting and melting.

UNIT 6: Files managements in R

CSV files, reading and analysing CSV file, R- Excel file, xlsx package, reading excel files, R binary files, R-XML files, XML to data frame, R-JSON file, input data in JSON file, Convert JSON to data frame

UNIT 7: Charts and Graphs

03

03

Pie charts, bar charts, box plots, histogram, line plots, scatter plots

UNIT 8: Statistics examples and case studies

10

Linear regression, Multiple regression , nonlinear least square , decision tree , random forests , chi square test, time series analysis, case studies related to electronics and instrumentation applications.

Self-Study:

The self study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self study contents.

Laboratory Work:

Laboratory work will consist of minimum 10 experiments based on the above syllabus.

References:

- 1. Nina Zumel , John Mount, Jim Porzak , Practical Data science with R , Manning Publications
- 2. Robert Cabacoff, R in action: Data analysis and graphics in R, Manning Publication.
- 3. Richard Cotton, Learning R: A Step-by-Step Function Guide to Data Analysis,O' Relly Pubications.
- 4. Norman Matloff, The art of R programming, No starch Press.
- 5. Mark Gardener, Beginning R, O' Relly Publications

L= Lecture, T= Tutorial, P= Practical, C = Credit