Nirma University School of Technology, Institute of Technology Electronics & Instrumentation Engineering

B. TECH. SEMESTER -III

L	T	P	C
3	0	2	4

Course Code	2EI303
Course Title	Basic Electronics

Course Learning Outcome:

state equations.

At the end of the course, students will be able to -

- 1. analyze analog circuits
- 2. design and analyze the sequential logic circuits
- 3. evaluate the performance of various electronic circuits

Syllabus	Teaching Hours
UNIT 1: Introduction to Analog & Digital electronics	1
UNIT 2: Field Effect Transistors (FET):	
Construction and characteristics of BJT, FET and MOSFET with their applications, MOSFETs for the digital IC fabrication, CMOS.	12
UNIT 3: Operational Amplifier Fundamentals of operational amplifier, Feedback configurations of operational amplifiers, Op-amp parameters.	3
UNIT 4: Optoelectronic Devices Overview of Photonics, Different Optoelectronic Devices.	5
UNIT 5: Sequential Logic Circuits	12
Classification of sequential circuits, Flip-flops, triggering of Flip-flops, conversion of flip-flops, Analysis of clocked sequential circuits. State reduction and assignments Flip-flop excitation tables. Design procedure, Design of counters, and design with	

UNIT 6: Registers, Counters and Memory Unit

Registers, shift registers, ripple counters, synchronous counters, timing sequences, memory unit.

UNIT 7: Algorithmic State Machines

3

9

Components of ASM chart, Features of ASM chart. Examples of ASM chart.

Self Study:

The self study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self study contents.

Laboratory Work:

Laboratory work will consist of minimum 12 experiments based on the above syllabus.

References:

- (1) Robert Boylestad, Electronic devices and circuit theory, Pearson Education.
- (2) R.A.Gayakwad, Op amp & Linear Integrated Circuits, Prentice-Hall.
- (3) Millman-Halkias, Integrated Electronics- Analog and Digital circuits and systems, Mc-Graw Hill.
- (4) M. Morris Mano, Digital Logic and Computer design, PHI publication.
- (5) Norman Balabanian and Bradley Carlson, Digital Logic Design Principles, Wiley Student Edition.
- (6) Biswanath Paul, Industrial Electronics and Control, Prentice Hall India.

