Nirma University School of Technology, Institute of Technology Electronics & Instrumentation Engineering

B. TECH. SEMESTER -III

L	T	P	С
3	0	2	4

Course Code	2EI304
Course Title	Circuit Theory

Course Learning Outcome:

At the end of the course, students will be able to -

- 1. develop an understanding of the fundamental principles & theorems of electrical networks
- 2. analyze the performance of two port networks
- 3. synthesize electrical networks

Sellabus	Teaching
Syllabus	Hours
UNIT 1: Basics of Electrical circuits	4
Electrical components, Classification of Networks, Sources of Energy UNIT 2: Techniques of Network Analysis	
Kirchhoff's Laws, The number of Network Equations, Mesh Analysis, Nodal Analysis, Source Transformation, Duality. UNIT 3: Network Theorems	6
Superposition Theorem, Thevenin's Theorem, Norton Theorems, Maximum Power Transfer Theorem, Reciprocity Theorem, Millman's Theorem, Substitution Theorem, Compensation Theorem	8
UNIT 4: Two-Port Network Parameters	
Two-Port Network, Open Circuit Impedance Parameters, Short Circuit Admittance Parameters, Transmission Parameters, Hybrid Parameters, Relationship between parameters, Interconnection of Two-Port Networks.	

UNIT 5 : Initial conditions and Transient Analysis

Initial Conditions in Elements, Solution of a First order and Second order differential equations, Transients in R-L and R-C Circuits, Transients in RLC Circuits.

UNIT 6: Sinusoidal Steady State Analysis

Characteristics of Sinusoidals, Forced response to Sinusoidal Functions, The Complex Forcing Function, Phasor Diagram.

UNIT 7: Transform Impedance and Transform Circuits

Representation of Electrical components in S-domain, Transform Methods in Network Analysis

UNIT 8: Network Functions

Terminal Pairs of Ports, Network Functions for Two-Port Networks, Poles and Zeros of the Network Functions, Time-Domain behavior from the Pole-Zero Plot. UNIT 9: Network Synthesis

Impedance and admittance functions of R-C, R-L and L-C Circuits. Representation of Transfer Functions in Foster and Cauer forms.

Self Study:

The self study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self study contents.

References:

- (1) William H. Hayt, Jr, Jack E. Kemmerly, Steven M. Durbin, Engineering Circuit Analysis, Mc Graw Hill
- (2) U. A. Patel, Circuits and Networks, Mahajan Publication
- (3) K.M. Soni, Circuit Analysis and Synthesis, S.K. Kataria & Sons

5

3

4

4

4