Nirma University School of Technology, Institute of Technology B. Tech (Electronics and Instrumentation Engineering)

L	T	Р	С
2	0	2	3

Course Code	2EIDE57
Course Title	Digital Design for Instrumentation

Course Outcomes (CO):

At the end of the course, students will be able to -

- describe architecture and working of different types of programmable logic devices
- develop Verilog code for different types of combinational and sequential circuits
- implement applications related to instrumentation on programmable logic devices

Syllabus	Teaching Hours
UNIT 1: Introduction to Design Concepts Introduction to digital design, significance of digital design over analog design, digital Hardware, design process, design of digital hardware, difference between FPGA and microcontroller based designs	01
UNIT 2: Programmable Logic Devices	
Difference between ASIC design and FPGA design, Field Programmable Logic Arrays(FPGA), Applications of CPLDs and FPGAs, Introduction to Verilog language for HDL programming	04
UNIT 3: Combinational Circuit Building Blocks	04
Multiplexers, decoders, encoders, code converters, arithmetic comparison circuits, Verilog for combinational circuits	
UNIT 4: Flip-flops, Registers, Counters	
Basic latch and flip flop structures, design with JK flip-flop, registers, counters, reset synchronization, BCD counter, registers and counters in Verilog	04

code, Using Verilog sequential statements for registers and counters

UNIT 5: Sequential Circuits

Basic design steps of sequential circuits, State machine concept, design of finite state machines, Moore design, Mealy design concepts designing of counters, registers using Finite state machine

UNIT 6: Applications related to Instrumentation

Analog to digital converter interface, digital to analog interface, data acquisition, control algorithms, memory implementation, pulse width modulation generation, stepper motor speed control.

Self Study:

The self study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self study contents.

Laboratory Work:

Laboratory work will consist of minimum 10 experiments based on the above syllabus.

References:

- Stephen Brown, Zvonko Vranesic, Fundamentals of digital logic design with VHDL, TATA McGraw-Hill Publication.
- 2. Charles H Roth, Fundamental of logic design, Jaico Publishing House.
- 3. Volnei A Pedroni, Circuit Design with VHDL, MIT press.
- 4. Douglas L. Perry, VHDL: Programming by Example, Tata McGraw-Hill Publication.
- 5. Kevin Skahill, VHDL for Programmable Logic, Pearson Education.
- 6. J.Bhaskar, VHDL Primer, PHI Publication.

09

08