Nirma University School of Technology, Institute of Technology B. Tech (Electronics and Instrumentation Engineering)

L	T	P	C
2	0	2	3

Course Title	Image Processing and its Applications
Course Code	2EIDE59

Course Outcomes (CO):

At the end of the course, students will be able to -

- illustrate the fundamentals of image processing techniques
- illustrate and apply the feature detection and tracking algorithms
- · apply the vision based algorithms in industrial applications

Syllabus	Teaching Hours
UNIT 1: Introduction	01
Introduction to Image Processing	01
UNIT 2: Digital image fundamentals	
Elements of visual perception, light and the electromagnetic spectrum, image sensing and acquisition, image sampling and quantization, some basic relationships between pixels.	03
UNIT 3: Image enhancement	
Some basic gray level transformations, histogram processing, enhancement using arithmetic/logic operations, basics of spatial filtering, smoothing spatial filters, sharpening spatial filters, smoothing frequency-domain filters,	06

UNIT 4: Morphological image processing and segmentation

sharpening frequency domain filters.

Dilation and erosion, opening and closing, the hit-or-miss transformation, thinning, thickening, region growing, region shrinking, detection of discontinuities, edge linking and boundary detection, thresholding, region-based segmentation.

Dussylva

UNIT 5: Object representation, description and recognition

07

Chain codes, polygonal approximations, signatures, boundary segments, skeletons, boundary descriptors, regional descriptors, patterns and pattern classes, recognition based on decision-theoretic methods, structural methods.

UNIT 6: Applications & case studies

06

Industrial applications of image processing, patterns classification, case studies.

Self Study:

The self study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self study contents.

Laboratory Work:

Laboratory work will consist of minimum 10 experiments based on the above syllabus.

References:

- 1. R.C. Gonzalez and R.E. Woods, Digital Image Processing, Pearson Education India.
- 2. A. Rosenfeld and A.C. Kak, Digital Picture Processing, Academic Press.
- 3. Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, Digital Image Processing Using MATLAB, PHI Publication.