## **Department Elective with Laboratory:**

| Institute:            | Institute of Technology                                                                                                                         |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Name of Programme:    | B. Tech in Electronics and Instrumentation Engineering                                                                                          |
| Course Code:          | 2EIDE61                                                                                                                                         |
| Course Title:         | Deep learning for vision systems                                                                                                                |
| Course Type:          | <ul> <li>([] Core/[] Value Added Course/[√] Departmental Elective/</li> <li>[] Institute Elective/[]University Elective/[]Any other)</li> </ul> |
| Year of introduction: | 2023-2024                                                                                                                                       |

## NIRMA UNIVERSITY

## **Credit Scheme**

| L | Т | Practical component |    |   |   | С |
|---|---|---------------------|----|---|---|---|
|   |   | LPW                 | PW | W | S |   |
| 2 | 0 | 2                   |    |   |   | 3 |

## **Course Learning Outcomes (CLO):**

At the end of the course, students will be able to -

- 1. illustrate basic architecture of convolution neural networks
- 2. evaluate existing practical vision systems
- 3. optimize convolutional neural network model
- 4. design deep learning based real life vision applications

| Total | Teaching | hours: | <u>30</u> |
|-------|----------|--------|-----------|
|-------|----------|--------|-----------|

| Unit     | Syllabus                                                                                                                                                                                             | Teaching<br>hours |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Unit-I   | Introduction to computer vision                                                                                                                                                                      | 04                |
|          | Image acquisition, image pre-processing, feature extraction, computer vision pipeline, applications of computer vision                                                                               |                   |
| Unit-II  | Deep learning                                                                                                                                                                                        | 05                |
|          | Single layer perceptron, multi-layer perceptron (MLP),<br>activation functions, errors functions, backpropagation,<br>feedforward process, optimization algorithm                                    |                   |
| Unit-III | Convolutional neural networks                                                                                                                                                                        | 05                |
|          | Image classifications using MLP, basic components of a convolutional neural network (CNN), CNN architecture, image classification using CNN, overfitting and underfitting, popular CNN architectures |                   |

MASK

Syllabus:

| Unit-IV                      | <b>Design of deep learning structure</b><br>Baseline model design, define performance metrics, data<br>preparation, model training, model evaluation, performance<br>estimation, network improvements, hyperparameter tuning,<br>optimization and learning regularization batel                                                                                                                                                                                                                                                                                      |      |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Unit-V                       | <b>Image classifications</b><br>Object detection, transfer learning, object classification,<br>advanced CNN architect                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Self-Study:                  | The self study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self                                                                                                                                                                                                                                                                                                                                                                                                                                        | of   |
| Laboratory V                 | Work: Laboratory Work will consist of minimum 10 experiments base<br>the above syllabus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d on |
| Suggested Li                 | <ul> <li>Introduction to the simulation software</li> <li>Image pre-processing and feature extraction</li> <li>Apprehend the activation functions and error functions</li> <li>Apply the feedforward and backpropagation learning</li> <li>Image data preparation</li> <li>Model training</li> <li>Perform model optimization and evaluation</li> <li>Model improvements and hyperparameter tuning</li> <li>Apply regularization and batch normalization</li> <li>Design of an object detection application</li> <li>Understand advanced CNN architecture</li> </ul> |      |
| Suggested Rea<br>References: | <ul> <li>6. Mohamed elgendy, Deep learning for vision systems<br/>Manning publications</li> <li>7. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep<br/>learning, The MIT press publications</li> <li>8. Francois chollet, Deep learning with python, Manning<br/>publications</li> <li>9. Josh patterson, Adam gibson, Deep learning: A<br/>practitioner's approach, Shroff/O'Reilly publications</li> <li>10. Nikhil buduma, Nicholas locascio, Fundamentals of deep<br/>learning: Designing next-generation machine intelligence</li> </ul>                   | ,    |
| Suggested Cas                | e List: Fabric defect detection, empty bottle inspection, sorting/grading applications, surface defect detection applications, print quality inspection etc.                                                                                                                                                                                                                                                                                                                                                                                                         |      |

L= Lecture, T=Tutorial, P= Practical, C= Credit

w.e.f. academic year 2023-24 and onwards.

