NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	B. Tech in Electronics and Instrumentation Engineering
Course Code:	2EIDE06
Course Title:	Soft Sensors
Course Type:	 ([] Core/[] Value Added Course/[√] Departmental Elective/ [] Institute Elective/[]University Elective/[]Any other)
Year of introduction:	2023-2024

Credit Scheme						
L	Т	Practical component				С
		LPW	PW	W	S	
3	0	0	-	-	-	3

Course Learning Outcomes (CLO):

At the end of the course, students will be able to -

- 1. explain the methods for soft sensor design
- 2. select appropriate model structure of soft sensor
- 3. model fault detection and diagnosis in industrial process
- 4. design soft sensor for industrial applications.

Syllabus:

Total Teaching hours: 45

Unit	Syllabus	Teaching hours
Unit-I	Introduction Soft Sensor, types of soft sensor's design approaches	04
Unit-II	Applications of Soft Sensors Back-up of measuring devices, reducing the measuring hardware requirements, real-time estimation for monitoring and control	06
Unit-III	Soft sensor design Identification of variables, data selection and filtering, model structure selection, model validation, multivariate statistical techniques, artificial intelligent techniques.	12

Unit IV	Choice of the m	adal structure	07
Cititer y	Static models Li	near dynamic models. Soft computing	07
	identification st	rategies, methods for input and	
	regressor selectio	n.	
Unit-V	Applications of	soft sensors in fault detection and	08
	diagnosis		00
	Basic terminolog	y in fault detection and diagnosis, an	
	overview of fault	detection and diagnosis, model based	
	fault detection,	fault models, fault detection	
	approaches, sym	ptom analysis and fault diagnosis.	
	hybrid approache	es to industrial fault detection and	
	diagnosis		
Unit-VI	Case studies		08
	Case studies relate	ed to soft sensor design for refineries,	
	chemical plants, co	ement kilns, food processing industries,	
	power plants, urba	an and industrial pollution monitoring	
	and civil engineeri	ng	
Self-Study	:	The self study contents will be decla	ared at the
		commencement of semester. Around 10% of	the questions
		will be asked from self study contents.	-
Suggested	List of		
Experimen	its:		
Suggested	Readings/	References:	
References	•	1. Luigi Fortuna, Salvatore Graziani, Aless	andro Rizzo.
		Maria G. Xibilia, Soft sensors for mo	onitoring and
		2 Pablo Antonio I and P	
		2. Paolo Antonio Lopez Perez, Ricardo Ag Ricardo Fernat, Control in Discussional	guilar Lopez,
		estimation and the use soft sensors. Wiley	g: Modelling,
		3. Rajamani Doraiswami, Marvhelen Star	Renson Chain
		Diduch, Identification of physica	al systeme
		Applications to condition monitoring far	ult diagnosis
		and a land	and Briosis,

Suggested Case List:

L= Lecture, T=Tutorial, P= Practical, C= Credit

w.e.f. academic year 2023-24 and onwards.

soft sensor and controller design, Wiley