NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	B. Tech in Electronics and Instrumentation Engineering
Course Code:	2EIDE08
Course Title:	VLSI Design
Course Type:	([] Core/[] Value Added Course/[√] Departmental Elective/ [] Institute Elective/[]University Elective/[]Any other)
Year of introduction:	2023-2024

Credit Scheme

L	T	Practic	C			
		LPW	PW	W	S	
3	0	0	-	-	-	3

Course Learning Outcomes (CLO):

At the end of the course, students will be able to -

- 1. analyze the different digital VLSI circuits
- 2. model the CMOS circuit with equivalent parameters
- 3. design combinational, sequential and dynamic logic circuits using CMOS for given specifications.
- 4. develop various types of memory circuits

Syllabus:

Total Teaching hours: 45

Unit	Syllabus	Teaching hours
Unit-I	Introduction of VLSI	02
	Historical perspective, Objective and organization, Overview of VLSI Design Methodologies, VLSI design	
	flow, Design Hierarchy, Concept of Regularity,	
	Modularity and Locality, VLSI design Styles, Design	
	Quality, Packaging Technology	
Unit-Il	MOS Basics Scaling and Effects of Scaling on MOS	05
	MOSFET Basics, V-I Characteristics, MOSFET scaling,	
	Small-geometry effects, MOSFET capacitances	
Unit-III	MOS Inverter Static Characteristics	08
	Introduction, Resistive load Inverter, Inverter with n-type	
	MOSFET load (Enhancement & Depletion type MOSFET load), CMOS Inverter.	

Unit-IV	MOS Inverters Switching Characteristics and Interconnect Effects Introduction, Delay-time definitions, Calculation of Delay times, Inverter design with delay constraints, Estimation of Interconnect Parasitic, Calculation of interconnect delay, Switching Power Dissipation of CMOS Inverters.	07	
Unit-V	Combinational MOS Logic Circuits Introduction, MOS logic circuits with Depletion NMOS Loads, CMOS logic circuits, Complex logic circuits, CMOS Transmission Gates (TGs).	05	
Unit-VI	Sequential MOS Logic Circuits Introduction, Behaviour of Bistable elements, SR latch circuit, Clocked latch & Flip-flop circuits, CMOS D-latch & Edge-triggered flip-flop.	03	
Unit -VII	Dynamic Logic Circuits Introduction, Basic Principles of pass transistor circuits, Voltage Bootstrapping, Synchronous Dynamic Circuit Techniques, CMOS Dynamic Circuit Techniques.	05	
Unit-VIII	CMOS memory circuit Design of ROM, SRAM and DRAM cells. Sequential MOS Logic Design, Static and dynamic latches, flip flops & registers, CMOS Schmitt trigger, Monostable sequential and Astable circuits, adders and multiplier circuits		
Unit-IX	Advances in VLSI Design Challenges with MOS, MOS Alternate Technologies, Low Power Technology	03	
Self-Study: Suggested List Experiments:	The self-study content will be declared at the comsemester. Around 10% of the question will be asked content.	mencement of the ed from self-study	
Suggested Re References:	Circuits – Analysis and Design, TAT 2.Pucknell and Eshraghian, Basic VLSI 3. Amar Mukerji, Introduction to nMOS and CM Design, Prentice Hall 4. Neil H. E. Weste, David Money Harris, CMOS	A McGraw-Hill Design, PHI OS VLSI System VLSI Design: A	
Suggested Ca			

