NIRMA UNIVERSITY

Institute:	Institute of Technology			
Name of Programme:	Minor in Industrial Automation (Inter-disciplinary) Offered by B.Tech. in Electronics and Instrumentation Engineering			
Semester:	VI			
Course Code:	3EI604IE24			
Course Title:	Edge Computing Application in Automation (Except CSE)			
Course Type:	Department Elective- I under Minor (Interdisciplinary)			
Year of introduction:	2024-2025			

L	T	Practical component					
		LPW	PW	$ \mathbf{w} $	S		
3	0	2				4	

10

Course Learning Outcomes (CLOs):

At the end of the course, the students will be able to -

1.	understand concept of edge computing	(BL2)
2.	analyze the problem using edge domain	(BL3)
3.	develop the ML model using data analytic techniques	(BL4)
4.	apply the edge computing technique.	(BL4)

				Contents				Teaching
								hours
Unit-I	Introduction							(Total 45) 04
	Introduction	to	computing	paradigm.	cluster	computing	cloud	

computing, utility computing, fog computing and edge computing

Unit-II Edge computing and its essentials

Edge computing architecture, state of the art edge computing interfaces and devices, Edge computing simulators, network architectures.

Unit-III Edge analytics 10

Types of Data , Data Analytics , Goals of Data Analytics , Domains Benefiting from Big Data Analytics , Real-Time Applications of Data Analytics , Phases of Data Analytics, Machine Learning-Model Building , Performance Evaluation , Types of Data Analytics ,Descriptive Analytics , Edge Data Analytics , Potential of Edge Analytics Architecture of Edge Analytics , Machine Learning for Edge Devices

Edge Analytics: Case Study.

Unit-IV Edge data security
Data Security, Data confidentiality, Authentication, privacy preserving

schemes, Edge based attacks and prevention.

Unit-V Edge computing case studies 08

Autonomous vehicles, smart cities, Industrial automation, gaming, content delivery, Health Sector etc

Unit-VI Future trends and emerging technologies 05

Edge computing and 5G , Blockchain in edge computing ,Quantum computing implications for edge ,Ethical considerations in edge computing

Self Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self study contents.

Laboratory Work:

This shall consist of at least 10 practicals based on the above syllabus.

Suggested Readings/ References:

- 1. Anitha Kumari, Edge computing fundamentals, CRC Press
- 2. Haitham Hamza and Satyajit Sinha, Edge Computing: A Comprehensive Guide, CRC Press
- 3. Ronan Keryell and Jonas Maebe, Edge Computing: Towards a Comprehensive Ecosystem, Springer
- 4. Sunil Cheruvu and Prasant Mohapatra, Practical Industrial IoT Security and Edge Computing Applications, Apress

Suggested List of Experiments:

1.	Setting up a Raspberry Pi cluster as an edge computing node	(02 Hrs)
2.	Building a sensor network and deploying it at the edge	(02 Hrs)
3.	Implementing edge analytics for real-time processing of data stream	(02 Hrs)
4.	Optimizing resource utilization in edge computing using containerization and clustering	(02 Hrs)
5.	Implementing machine learning models at the edge for AI-based inference	(02 Hrs)
6.	Setting up a secure communication channel between edge devices and the cloud	(02 Hrs)
7.	Integrating blockchain for secure and decentralized edge computing	(02 Hrs)
8.	Implementing edge computing for healthcare applications such as patient monitoring and diagnosis	(02 Hrs)
9.	Testing edge computing systems for performance, latency, and energy efficiency	(04 Hrs)
10.	Deploying edge computing for industrial automation and predictive maintenance	(04 Hrs)

L = Lecture, T = Tutorial, P = Practical, C = Credit