NIRMA UNIVERSITY

Institute:	Institute of Technology		
Name of Programme:	M.Tech. in Electronics & Instrumentation Engineering (Robotics and Artificial Intelligence)		
Semester:	II		
Course Code:	6EI861ME25		
Course Title:	Nonlinear and Digital Control		
Course Type:	Elective		
Year of introduction:	2025 - 26		

L	T	Practical component				
		LPW	PW	W	S	
2	1	-	-	-	-	3

Course Learning Outcomes (CLOs):

After successful completion of the course, student will be able to -

1.	explain the basics of nonlinear and digital control systems	(BL2)
2.	analyse nonlinear systems	(BL4)
3.	evaluate the performance of discrete time control systems	(BL5)
4.	design controller for discrete time systems.	(BL6)

Unit	Contents		
		(Total 30)	
Unit I	Introduction to Nonlinear Control System	02	
	Nonlinear system elements, Continuous and discontinuous nonlinearities, behaviour of nonlinear control systems		
Unit II	Stability Analysis of Nonlinear System	08	
	Introduction to Phase plane analysis, concept of equilibrium point and related stability, Linearization techniques, Stability using Lyapunov method, Input-output stability, L stability, L stability of state models, L_2		
	gain, related examples.		
Unit III	Digital Control System: Mathematical Modelling	10	
	Introduction to Digital control of continuous time system, Overview of sampled data control system. Discrete-time system and Z-Transformation, properties of Z- transform, Modified z-transform, Mapping of s-plane to z-plane, State space description of dynamic system, related examples.		
Unit IV	Digital Control System: Analysis	05	
	Computation of the solution of discrete time state equations, state space- based time response analysis for various inputs, Jury's stability test for the sampled data control system, stability analysis of discrete time system		

Unit V Digital Control System: Design

05

Discrete time observer and controller, related examples, Separation Principle for discrete time state model-based system

Self - Study:

The self-study contents will be declared at the commencement of semester.

Around 10% of the questions will be asked from self-study contents.

Suggested

1. Hasan Khalil, Nonlinear Control, Pearson Education

Readings/References:

- Hasan Khalil, Nonlinear Systems, Pearson Education
 Nagrath I. J., Gopal M., Control System Engineering, New Age International Publication
- 4. Gopal M., Digital control and state variable methods, New Age International Publication

Suggested List of Tutorials:

- 1. Study of various nonlinear system
- 2. Analyze the behavior of the nonlinear system in presence of time varying input
- 3. Analysis of nonlinear system using Describing function based method
- 4. Analysis of nonlinear system using linearization techniques
- 5. Analysis of nonlinear system using Lyapunov's method
- 6. Develop the mathematical modeling of the discrete time system in the state space domain
- 7. Analyze sampled data control system
- 8. Perform the stability analysis of the sampled data system
- 9. Analyze the discrete time control system
- 10. Perform stability analysis of discrete time control system
- 11. Design a state feedback controller for the discrete time system
- 12. Design a state observer for the discrete time system

L = Lecture, T = Tutorial, P = Practical, C = Credit

w.e.f. the academic year 2025 - 26 and onwards

ri intro - I_IV