NIRMA UNIVERSITY

Institute:	Institute of Technology		
Name of Programme:	M.Tech. in Electronics & Instrumentation Engineering (Robotics and Artificial Intelligence)		
Semester:	II		
Course Code:	6EI862ME25		
Course Title:	Programmable Logic Controller		
Course Type:	Elective		
Year of introduction:	2025 - 26		

L	T	Practical component				C
		LPW	PW	W	S	
2	-	2	-	-	-	3

Course Learning Outcomes (CLOs):
After successful completion of the course, student will be able to –

1.	explain the fundamentals of Programmable Logic Controllers (PLCs) and their	
	applications	(BL2)
2.	develop PLC programming using various logic and control techniques	(BL3)
3.	appraise PLC-based automation systems for industrial and robotic application	(BL5)
4.	design PLC control systems for efficient performance in robotic field.	(BL6)

Unit	Contents	Teaching
Onit	Contents	Hours
		(Total 30)
Unit I	Introduction to PLCs	03
11.7411	Fundamentals of industrial automation and role of PLCs, evolution and need for PLCs in modern automation, basic architecture and working of a PLC system, advantages and disadvantages of PLCs over traditional control systems, PLC selection criteria for different applications.	
Unit II	PLC Programming and Logic Development	10
	Introduction to PLC programming languages: Ladder Logic, Functional Block Diagram, and Structured Text, basic logic operations: AND, OR, NOT, XOR, timers and counters: ON/OFF delay, Up/Down counters, arithmetic and data handling functions, implementation of combinational and sequential logic in PLCs, Case study: PLC logic development for robotic pick-and-place operation.	
Unit III	PLC Communication and Interfacing	04
	Communication protocols in PLCs: RS232, RS485, Modbus, Profibus, Ethernet, remote monitoring and data acquisition using PLCs, interfacing PLCs with robotic systems and industrial networks, Case study: PLC-based control system for a robotic assembly line.	
Unit IV	Advanced PLC Control Techniques	05
	Introduction to PID control using PLCs, motion control applications using PLCs, use of PLCs in safety-critical applications, implementation of control logic in PLC-based control systems, case study: Automated conveyor system controlled via PLC.	

Unit V PLC Applications in Robotics and Automation

08

PLC-controlled robotic arms and mobile robots, industrial automation applications using PLCs, troubleshooting and maintenance of PLC-controlled systems, recent trends in PLCs for robotic applications, case study: PLC implementation for an autonomous robotic warehouse system.

Self - Study:

The self-study contents will be declared at the commencement of semester.

Around 10% of the questions will be asked from self-study contents.

Suggested

1. Hugh Jack, Automating Manufacturing Systems with PLCs, Pearson.

Readings/References:

- 2. John R. Hackworth, Programmable Logic Controllers: Programming Methods and Applications, Pearson.
- 3. Frank D. Petruzella, Programmable Logic Controllers, McGraw-Hill.
- 4. Madhuchhanda Mitra, Programmable Logic Controllers and Industrial Automation, Oxford University Press.

Suggested List of tutorials:

- 1. Introduction to PLC hardware and software.
- 2. Understand basic logic operations using ladder logic.
- 3. Programming and testing of timers and counters.
- 4. Understand analog input and output interfacing with PLC.
- 5. Understand motor control using PLC.
- 6. Programming related to PLC-based traffic light control system.
- 7. Demonstrate industrial conveyor belt automation using PLC.
- 8. Understand the methodology for PLC based communication systems.
- 9. Understand implementation of industrial robot control using PLC.
- 10. Understand PLC-controlled robotic pick-and-place system.
- 11. Understand PLC based sorting system on conveyor belt mechanism.
- 12. Understand application of automated sorting system using PLC.

L = Lecture, T = Tutorial, P = Practical, C = Credit

w.e.f. the academic year 2025 - 26 and onwards

Soul Me de la constitución de la