NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology		
Name of Programme:	BTech in Electronics and Instrumentation Engineering		
Semester:	VII		
Course Code:	4EI602ME25		
Course Title:	VLSI Design		
Course Type:	Department Elective - IV		
Year of Introduction:	2024-2025		

		Practical Component				C
L	T					
		LPW	PW	W	S	
3	1	0				4

08

10

Course Learning Outcomes (CLOs):

At the end of the course, the students will be able to -

1	parametric analysis of circuit families based on design and operation				
2	utilize different digital modules with applications				
3	analysis of FPGA architectures for desing and testing framework				
4	testing strategies and methodology analysis with evaluation of	(BL5)			
	parameters.	(DL3)			

Unit		Contents	Teac	ching
			ho	urs
			(Tot	al 45)
Unit-I	Introduction to MOS transi	stor		09

Unit-I Introduction to MOS transistor

MOS Transistor, CMOS logic, Inverter, Pass Transistor, Transmission gate, Layout Design Rules, Gate Layouts, Stick Diagrams, Long-Channel I-V Charters tics, C-V Charters tics, non-ideal I-V Effects, DC Transfer characteristics, RC Delay Model, Elmore Delay, Linear Delay Model, Logical effort, Parasitic Delay, Delay in Logic Gate,

Combinational MOS logic circuits Unit-II

Circuit Families: Static CMOS, Ratioed Circuits, Cascode Voltage Switch Logic, Dynamic Circuits, Pass Transistor Logic, Transmission Gates, Domino, Dual Rail Domino, CPL, DCVSPG, DPL, Circuit Pitfalls. Power: Dynamic Power, Static Power, Low Power Architecture.

Unit-III Sequential circuit design

Scaling.

Static latches and Registers, Dynamic latches and Registers, Pulse Registers, Sense Amplifier Based Register, Pipelining, Schmitt Trigger, Monostable Sequential Circuits, Astable Sequential Circuits. Timing Issues: Timing Classification of Digital System, Synchronous Design.

Unit-IV Design of arithmetic building blocks and subsystem

10

Arithmetic Building Blocks: Data Paths, Adders, Multipliers, Shifters, ALUs, power and speed tradeoffs, Case Study: Design as a tradeoff. Designing Memory and Array structures: Memory Architectures and Building Blocks, MemoryCore, Memory Peripheral Circuitry.

Unit-V Implementation strategies and testing

08

FPGA Building Block Architectures, FPGA Interconnect Routing Procedures. Design for Testability: Ad Hoc Testing, Scan Design, BIST, IDDQ Testing, Design for Manufacturability, Boundary Scan.

Self Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self study contents.

Tutorial:

Tutorial work will be based on above syllabus with minimum 10 tutorials to be incorporated.

Suggested Readings/ References:

- 1. Neil H.E. Weste, David Money Harris, *CMOS VLSI Design: A Circuits and Systems Perspective*, 4th Edition, Pearson, 2017 (UNIT I,II,V)
- 2. Jan M. Rabaey ,Anantha Chandrakasan, Borivoje. Nikolic, |Digital Integrated Circuits: A Design perspective, Second Edition , Pearson , 2016.(UNIT III,IV)
- 3. M.J. Smith, Application Specific Integrated Circuits, Addisson Wesley, 1997
- 4. Sung-Mo kang, Yusuf leblebici, Chulwoo Kim. *CMOS Digital Integrated Circuits: Analysis & Design*, 4th edition McGraw Hill Education, 2013
- 5. Wayne Wolf, Modern VLSI Design: System On Chip, Pearson Education, 2007
- 6. R.Jacob Baker, Harry W.LI., David E.Boyee, *CMOS Circuit Design, Layout and Simulation*, Prentice Hall of India 2005.

Suggested List of Tutorial:

Sr. Title

No

- 1. Study related to the parameter analysis of MOS based circuits and different delay models
- 2. Study related to the various design rules and diagrams with non-linear effects
- 3. Study of various parameters related to the logic families and their different architectures
- 4. Study and analysis of various power dissipation parameters along with different combinations
- 5. Study and analysis of various sequential logic designs and their applications
- 6. Study and analysis of various approaches and parameters related to the specific sequential circuits
- 7. Study and analysis of various memory architectures and their applications
- 8. Study and analysis of parameters trade-offs for arithmetic building blocks
- 9. Analysis of various implementation strategies of FPGA
- 10. Study of distinct testing methodologies for FPGA design