NIRMA UNIVERSITY | Institute: | Institute of Technology | |-------------------|--| | Name of | M.Tech. in Electronics & Instrumentation Engineering (Robotics and | | Programme: | Artificial Intelligence) | | Semester: | II | | Course Code: | 6CS401CC25 | | Course Title: | Machine and Deep Learning | | Course Type: | Core | | Year of | 2025 - 26 | | Introduction: | | | L | T | Practical Component | | | | C | |---|---|----------------------------|----|---|---|---| | | | LPW | PW | W | S | | | 2 | - | 2 | - | - | - | 3 | ## Course Learning Outcomes (CLO): After successful completion of the course, student will be able to - - 1. demonstrate the concepts of supervised and unsupervised learning, and their (BL2) applications - 2. apply supervised and unsupervised learning techniques, including clustering and classification algorithms, to analyze datasets - 3. develop deep learning models such as ANNs, CNNs, and sequence models (BL3) (RNNs, LSTMs, GRUs) for complex applications - 4. evaluate advanced techniques like transfer learning, GANs, and reinforcement (BL5) learning for solving research challenges. | Unit | Contents | Teaching | |---------|---|------------| | | | Hours | | | | (Total 30) | | Unit-I | Introduction to ML and DL | 04 | | | Motivation and Applications, importance of Data Visualization, Basics of Supervised and Unsupervised Learning, Hierarchical Agglomerative Clustering, k-means Algorithm, Self-Organizing Maps | | | Unit-II | Supervised Learning | 08 | | | Regression Techniques: Basic concepts and applications of Regression, Simple Linear Regression – Gradient Descent Method, Multiple Linear Regression, Non-Linear Regression, Linear Regression with Regularization, Hyper-parameters tuning, Loss Functions, Evaluation Measures for Regression Techniques Classification Techniques: Naïve Bayes Classification, Fitting Multivariate Bernoulli Distribution, Gaussian Distribution and Multinomial Distribution, K-Nearest Neighbours, Decision trees, | | | | Support Vector Machines | | | Unit-III | Artificial | Neural Networks | 06 | |----------------------|--|--|----| | | | n Learning, Feed Forward Neural Networks, Back-
on, Unstable and vanishing Gradient Problem | | | | | ional Neural Networks: Convolution & Pooling, Dropout, rmalization, State-of-the-art CNNs | | | Unit-IV | | Learning & Domain Adaptation | 09 | | | Transfer
Transfer
Supervise
Advanced
Stacked | Learning Scenarios, Applications of Transfer Learning, Learning Methods, Fine Tuning and Data Augmentation, ed, Semi Supervised and Unsupervised Deep Learning Concepts: Linear Discriminant Analysis, Auto encoders and Auto encoders, Generative Adversarial Networks, Deep | | | Unit-V | Sequence | | 05 | | | Recurrent
Term Me | Neural Networks (RNN), Language Modelling, Long-Short emory Network, Gated Recurrent Unit, Bi-directional RNN, ons of Sequence Models | | | Self-Study: | | The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents | | | Suggested | | 1. Tom Mitchell, Machine Learning, TMH | | | Readings/References: | | Bishop C., Pattern Recognition and Machine Learning, Springer Kishan Mehrotra, Chilukuri Mohan, Sanjay Ranka, Elements of Artificial Neural Networks, Penram International Athem Ealpaydin, Introduction to Machine Learning, PHI Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning MIT Press | | | | | 6. Charu C. Aggarwal, Neural Networks and Deep Learning – A Textbook, Springer | A | | | | Adam Gibson, Josh Patterson, Deep Learning, O'Reilly Media, Inc. Hastie T., Tibshirani R., Friedman J., The Elements of Statistica
Learning, Springer | al | | | | | | ## Suggested List of experiments: | Sr. No. | Title | Hours | | | |---------|--|-------|--|--| | 1. | Introduction to Python, Numpy, Pandas, Matplotlib, Sklearn and Pytorch | 04 | | | | 2. | Simple and Multiple Linear Regression using Gradient Descent & Normal | | | | | | Equation Method (without using sklearn or equivalent library for both) | | | | | 3. | Linear Regression with Regularization (without using sklearn or | 02 | | | | | equivalent library) and Simple and Multiple Linear Regression with and | | | | | | without regularization using Sklearn | | | | | 4. | Naïve-Bayes - Multivariate Bernoulli, Multinomial and Gaussian using | 02 | | | | | sklearn | | | | | 5. | Decision Trees - ID3, C4.5 using sklearn and Support Vector | 02 | |-----|---|----| | | Classification and Regression with Grid Search for Hyper-parameter | | | | tuning using sklearn | | | 6. | AND gate using Perceptron Learning (self-implementation) and Ex-OR | 04 | | | Gate/any other problem using Backpropagation Neural Networks (self- | | | | implementation) | | | 7. | Backpropagation Neural Network and K-means using sklearn | 02 | | 8. | Convolutional Neural Network on MNIST, Fashion MNIST and CIFAR10 | 04 | | | datasets with and without transfer learning | | | 9. | Language Modelling using RNN | 04 | | 10. | MNIST like image generation using GAN | 02 | | | | | L = Lecture, T = Tutorial, P = Practical, C = Credit w.e.f. the academic year 2025 - 26 and onwards