NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of	M.Tech. in Electronics & Instrumentation Engineering (Robotics and
Programme:	Artificial Intelligence)
Semester:	II
Course Code:	6CS401CC25
Course Title:	Machine and Deep Learning
Course Type:	Core
Year of	2025 - 26
Introduction:	

L	T	Practical Component				C
		LPW	PW	W	S	
2	-	2	-	-	-	3

Course Learning Outcomes (CLO):

After successful completion of the course, student will be able to -

- 1. demonstrate the concepts of supervised and unsupervised learning, and their (BL2) applications
- 2. apply supervised and unsupervised learning techniques, including clustering and classification algorithms, to analyze datasets
- 3. develop deep learning models such as ANNs, CNNs, and sequence models (BL3) (RNNs, LSTMs, GRUs) for complex applications
- 4. evaluate advanced techniques like transfer learning, GANs, and reinforcement (BL5) learning for solving research challenges.

Unit	Contents	Teaching
		Hours
		(Total 30)
Unit-I	Introduction to ML and DL	04
	Motivation and Applications, importance of Data Visualization, Basics of Supervised and Unsupervised Learning, Hierarchical Agglomerative Clustering, k-means Algorithm, Self-Organizing Maps	
Unit-II	Supervised Learning	08
	Regression Techniques: Basic concepts and applications of Regression, Simple Linear Regression – Gradient Descent Method, Multiple Linear Regression, Non-Linear Regression, Linear Regression with Regularization, Hyper-parameters tuning, Loss Functions, Evaluation Measures for Regression Techniques Classification Techniques: Naïve Bayes Classification, Fitting Multivariate Bernoulli Distribution, Gaussian Distribution and Multinomial Distribution, K-Nearest Neighbours, Decision trees,	
	Support Vector Machines	

Unit-III	Artificial	Neural Networks	06
		n Learning, Feed Forward Neural Networks, Back- on, Unstable and vanishing Gradient Problem	
		ional Neural Networks: Convolution & Pooling, Dropout, rmalization, State-of-the-art CNNs	
Unit-IV		Learning & Domain Adaptation	09
	Transfer Transfer Supervise Advanced Stacked	Learning Scenarios, Applications of Transfer Learning, Learning Methods, Fine Tuning and Data Augmentation, ed, Semi Supervised and Unsupervised Deep Learning Concepts: Linear Discriminant Analysis, Auto encoders and Auto encoders, Generative Adversarial Networks, Deep	
Unit-V	Sequence		05
	Recurrent Term Me	Neural Networks (RNN), Language Modelling, Long-Short emory Network, Gated Recurrent Unit, Bi-directional RNN, ons of Sequence Models	
Self-Study:		The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents	
Suggested		1. Tom Mitchell, Machine Learning, TMH	
Readings/References:		 Bishop C., Pattern Recognition and Machine Learning, Springer Kishan Mehrotra, Chilukuri Mohan, Sanjay Ranka, Elements of Artificial Neural Networks, Penram International Athem Ealpaydin, Introduction to Machine Learning, PHI Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning MIT Press 	
		6. Charu C. Aggarwal, Neural Networks and Deep Learning – A Textbook, Springer	A
		 Adam Gibson, Josh Patterson, Deep Learning, O'Reilly Media, Inc. Hastie T., Tibshirani R., Friedman J., The Elements of Statistica Learning, Springer 	al

Suggested List of experiments:

Sr. No.	Title	Hours		
1.	Introduction to Python, Numpy, Pandas, Matplotlib, Sklearn and Pytorch	04		
2.	Simple and Multiple Linear Regression using Gradient Descent & Normal			
	Equation Method (without using sklearn or equivalent library for both)			
3.	Linear Regression with Regularization (without using sklearn or	02		
	equivalent library) and Simple and Multiple Linear Regression with and			
	without regularization using Sklearn			
4.	Naïve-Bayes - Multivariate Bernoulli, Multinomial and Gaussian using	02		
	sklearn			

5.	Decision Trees - ID3, C4.5 using sklearn and Support Vector	02
	Classification and Regression with Grid Search for Hyper-parameter	
	tuning using sklearn	
6.	AND gate using Perceptron Learning (self-implementation) and Ex-OR	04
	Gate/any other problem using Backpropagation Neural Networks (self-	
	implementation)	
7.	Backpropagation Neural Network and K-means using sklearn	02
8.	Convolutional Neural Network on MNIST, Fashion MNIST and CIFAR10	04
	datasets with and without transfer learning	
9.	Language Modelling using RNN	04
10.	MNIST like image generation using GAN	02

L = Lecture, T = Tutorial, P = Practical, C = Credit

w.e.f. the academic year 2025 - 26 and onwards